Search
Displaying results 31 to 40 of 58.
Organisation
Organisation About us The Structure of the CiiM The CiiM is a joint scientific institution (§ 36 NHG) formed by the founding partners HZI and MHH and was established in 2015 with the signing of a Letter of Intent. The basic principles of the collaboration…
Location & Building
Location & Building About us A Designated Building for Individualized Infection Medicine The Location Hannover - Braunschweig is one of the most important German research regions in the field of infectiology. The close partnership between the HZI in…
Partner
Partner About us A strong network for the requirements of Individualized Infection Medicine. The embedding of CiiM in the region's existing research network ensures access to patients, interdisciplinary expertise and state-of-the-art technology. Through the…
Team
Team Since its foundation in 2015, the CiiM has grown continuously and coordinative and administrative teams have been created alongside the research groups . Management Prof Dr Yang Li CiiM Director - CiiM Computational Biology for Individualised Medicine…
Personalised Immunotherapy
Our motivation is to address fundamental questions of human immunology and translate them into personalized therapies and diagnostics. Specifically, our laboratory discovers new applications of antibodies and B cells to treat and prevent human infectious diseases. Effective vaccines against some viruses that escape antibody responses remain elusive. To tackle this challenge, we develop methods to better understand B cell responses, the cells that produce antibodies. We design tailored vaccines and provide novel solutions for infection diagnostics.
Research groups
Research The groups at CiiM Four research groups of the HZI and the MHH are currently directly assigned to CiiM and are housed in TWINCORE until the new building is commissioned. In addition, other professorships at MHH (some as joint appointments with HZI)…
Infection Biology
Microbial communities consisting of bacteria, fungi and viruses colonize all surfaces of the human body. They are referred to in their entirety as the microbiome. The composition of the microbiome varies between individuals and also within an individual in the course of life. Important influencing factors at the beginning of life are the mode of birth and diet, later the intake of antibiotics and medication as well as long-term diets, the state of health, but also sport and stress play a role. In recent years, a large number of studies have begun to investigate the extent to which the microbiome and its changes actively contribute to our health and the development of diseases. For various diseases, it has been shown in animal models and clinical studies that certain changes in the microbiome influence either the development or the course of e.g. chronic inflammatory bowel diseases or susceptibility to infections. This has led to the development of novel microbiome-based therapies that are currently being investigated in animal models and clinical studies. Prof. Strowig's department uses interdisciplinary approaches from microbiological, immunological and bioinformatic methods to gain a molecular understanding of the complex interactions between the intestinal microbiome and the host. The knowledge that can be gained from this forms an important cornerstone for the development of new individual prevention and therapy approaches. The close cooperation between the MHH and HZI at the CiiM will enable research results from basic research to be transferred more directly into practice in the future. One example is the successful establishment of a microbiome analysis platform, which is essential for researching the influence of the host's microbiome on its susceptibility to infections and has already been used for various patient cohorts (RESIST-SeniorIndividuals, LöwenKIDS). Another example is the identification of specific microbiome components that can be used in preclinical models to prevent colonization with disease-promoting bacteria.
Immunology of Viral Hepatitis and Infections in Liver Cirrhosis
Hepatitis viruses A-E pose a major health challenge worldwide. Acute infections with hepatitis B (HBV), C (HCV), D (HDV) or E (HEV) can progress to chronic hepatitis and lead to liver cirrhosis and hepatocellular carcinoma. Chronic viral hepatitis affects more than 350 million people worldwide. While direct-acting antiviral drugs provide a cure for chronic hepatitis C, the long-term effects on the immune system after the infection is cured are not fully understood. While direct-acting antiviral nucleos(t)ide analogues can treat chronic hepatitis B, complete cure is rare. Innovative approaches, particularly modulation of the immune response to HBV, hold promise for a cure. Chronic hepatitis D is always a co-infection with HBV and thus concepts to cure HBV will also target HDV. In chronic hepatitis E, which is unique in immunocompromised patients such as organ transplant patients, enhancing the immune response against HEV may be a novel strategy. In people with cirrhosis of the liver, regardless of the cause, the immune system is compromised and susceptibility to infection is increased. In particular, bacterial infections of the peritoneal cavity due to ascites contribute significantly to disease progression. Our research group focuses on understanding immune responses to hepatitis viruses and developing biomarkers to better stratify patients for new therapeutic strategies to modulate the host immune system in the effort to combat chronic viral hepatitis. In addition, we are exploring the mechanisms underlying immunodeficiency in liver cirrhosis and investigating immunomodulation strategies to improve survival in these vulnerable patients.
Computational Biology for Infection Research
The group studies microbial communities, including bacteria, viruses and eukaryotic community members, in the context of human health and disease. Direct metagenome, -transcriptome or -proteome sequencing of microbial community samples enables the study of microorganisms that cannot be obtained in pure culture, corresponding to most of the microbial world.